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Abstract

In the formulation of statistical relationships among forecast errors in

the optimal interpolation (OI) analysis system at NMC, it is currently assumed

that horizontal gradients of the height-field forecast error standard deviation,

, are negligible. This homogeneity assumption is reasonable only in areas

of uniform data density and quality. The dominant feature on the maps of r

actually produced by the OI system is in fact the rapid change of 0o near bound-

aries between data-dense and data-sparse regions.

In this note we rederive the statistical relationships among forecast errors,

without assuming that the Or field is homogeneous. The resulting forecast

error statistics are compared with the conventional ones, using realistic G

fields. The comparison shows that the wind-field forecast error standard

deviations are increased over the entire globe, and by as much as about 30% in

some regions. The wind-height and wind-wind forecast error correlations are

changed even more dramatically. For example, the correlation between height

and zonal wind forecast errors at a point is 0.0 if is constant there, but

becomes as large as about + 0.6 at points where GO is changing rapidly. More

generally, the wind-height and wind-wind forecast error correlations lose the

homogeneity and isotropy properties they possess in conventional OI formulations,

in a manner reflecting the variability of data density and quality encountered

over the globe.
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I. Introduction

A primary consideration in optimum interpolation (OI) analysis schemes is

the specification of the forecast error covariance fields. At NMC, the auto-

correlation of the height-field forecast error is modeled by an analytically

prescribed function, and the covariances among the other variables are derived

from it by assuming a geostrophic relationship among forecast errors (Bergman,

1979; McPherson et al., 1979). Another assumption made in the process of

deriving the forecast error covariances is that the standard deviation (- of

the height-field forecast error is locally homogeneous. This means that at

each analysis point, Cr is assumed constant over a two-dimensional area corres-

ponding to the influence region of the correlation function, at NMC a circle

with a radius of approximately 1500 km.

The homogeneity assumption is made in most, if not all operational multi-

variate OI analysis schemes (Bergman, 1979; Lorenc, 1982; Rutherford, 1976;

Schlatter, 1975). However, it is a reasonable assumption only in areas of

uniform data quality and availability. At boundaries between such areas,

Go changes quite rapidly over distances much less than 1500 km. In fact,

the dominant feature on maps of forecast error standard deviations is precisely

the presence of sharp gradients due to variable data density and quality (see

Fig. 1).

It is a simple process mathematically to remove the homogeneity assumption

from the OI forecast error covariance relationships. A few additional terms

involving the east-west and north-south derivatives of OJ must be calculated.

This increased computation time is one reason the homogeneity assumption was

originally made. The recent acquisition of a CYBER 205 at NMC, in part, has

prompted us to reconsider the homogeneity assumption.
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We show in this paper that inclusion of the effect of horizontal gradients

of Qf in the OI formulation alters significantly the wind-height and wind-wind

forecast error covariances. The effect always increases the wind-field forecast

error standard deviations, by up to about 30% in some regions. The wind-height

and wind-wind correlations are altered even more dramatically. In particular,

these correlations lose the homogeneity and isotropy properties they possess in

conventional OI formulations, in a manner reflecting the variability of data

density and quality encountered over the globe. In fact, these correlations

all asymptote to the height-height correlation as logarithmic gradients of G'

increase. We show that this asymptotic effect is quite large near data-dense/

data-sparse boundaries encountered in several regions of the world.

The relationships among forecast error covariances, variances, and corre-

lations, including the effect of gradients of 0 , are derived in Section

II. These relationships are derived under the sole assumption that forecast

errors are geostrophic. No particular form is assumed for the height-height

correlation field. Section III discusses implementation details, as well as

drawbacks and generalizations of the geostrophic assumption. The magnitude of

the effect of gradients of OG upon forecast error standard deviations and

correlations is discussed in Section IV. Correlation function plots using

simulated fields are presented in Section V. These plots are based on a height-

height forecast error correlation model which is a Gaussian function of spherical

distance. A companion paper (Morone and Cohn, 1984) details the effect of

using various approximations to the spherical distance. Conclusions appear in

Section VI.
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II. Derivation of OI Statistical Relationships

We derive in this section the general relationships among forecast error

covariances, variances, and correlations, under the sole assumption that fore-

cast errors are geostrophic, and given an arbitrary height-height forecast

error covariance field. The main difference between our derivation and more

conventional ones is that we account for the effect of horizontal gradients of

height-height forecast error variances. Also, by leaving the height-height

forecast error covariance arbitrary for now, it will be easy to derive in the

companion paper the statistical relationships resulting from various formulations

of the height-height forecast error covariance field.

To begin, let

ui, vi, and zi

denote the forecast errors in the zonal wind, meridional wind and height, at a

point

Pi = ) 

where I , 1 and p denote longitude, latitude and pressure. An overbar will

denote the expectation, or ensemble average, so that

I _ 

qi = qi -qi , where q = u, v or z,

denotes the departure of qi from its mean Ti. The quantity

qi rj, where q = u, v or z, and r = u, v or z,

is the covariance between qi = q( \i , Pi , p ) and rj = r( ~j ,j,~ ).

The standard deviations Q~ are the positive square roots of the variances
L~~~~~~~~~
( e ) - qS qi-

The correlations C[j between qi and r i are defined by

- xJ' o-Z i
3 VI

When i = 1 and j = 2, we drop the subscripts on C. , i.e., C = C =

C 1)+ )a z1 t1p 
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The central assumption upon which OI statistical relationships are tradi-

tionally based is that forecast errors are geostrophic, with a relaxation of

this assumption in the tropics:

Go - Xi ma - - (2.1a,b)

where

_=Hi 9 S t C1'- (2.2a,b)

Here g is the acceleration due to gravity, a is the radius of the earth,

i = 2•2 Sin 4i is the Coriolis parameter, and Gi is the relaxation factor, or

coefficient of geostrophy. We retain (2.1, 2.2) as our working assumption.

Some implications, as well as some generalizations, of the geostrophic assumption

itself are discussed in Section III.

Equations (2.1) immediately imply, in the usual way, that the height-height

forecast error covariance field determines the remaining covariances. Taking

expectations in each of (2.la,b) we have

Vi = O ; am L , !.JL A a i i(2.3a,b)

subtracting (2.3a,b) from (2.1a,b) gives

U _ ~~~~~~~~~~~~~LFr=L om (2.4a,b)
From (2.4a,b) it then follows that

U1 llb 0 ly - Z. L- O(2 + (2.5a,b)



--= A Z 2a Z 

I - ; /
u(, zu. =o L 2-

, "V
(2.5gh)(2. 5g, h)

Since by definition,

I, I = C C
I Z~

(2.6a)

)

it is clear

not only on

and ord .

OI schemes.

from (2.5a-h) that the wind-height and wind-wind covariances depend

derivatives of Cz , but also on derivatives of either or both of a

The latter derivatives are assumed to be neglibible in conventional

We retain these terms in the derivation to follow.

Taking the natural logarithm of (2.6a) gives

1o30 + -3 I' 1o ;C103 2, - 1- 3 l i + * °3og + lo C3

and differentiating (2.6b) with respect to ! , say, gives

I ~~~~~-q

Differentiating (2.7a) with respect to , say, gives

>j~C ' -i'CV 0( 0A a7 +
-Z , -v - K A

I~2 2C 2

VI Z. ,

5

v IV (2.5c,d)

(2.5e,f)

. _

(2.6b)

(2.7a)

(2.7b)

C(z �2

P 1 ��1?07-L I VI/ = Cp 2 A z | " I' - 2" I Z

/I/ 2 Ap A I 7-
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+ ----
I L2

Substituting (2.7a,c) and similar expressions into (2.5a-h) then gives

( 3IoC a

(

/>lok Ct

= C A2

"1t 3 qTZ

?2 L IDO,

105 i)

De\ I

I

Y I j0 3 :-

U'Vz ~~II/ -VZ , Z. -

-2II 

vIU - I Z' = P Cq , 3dzZ
a/I a 2

u'j,7 

I

Vi1 I; Z,
Dz lo C 

---- =1 b A

K 71
/ - \

+ ( V ' z'
! 

Ut I

L

4- \/I Z-

-Z- "z

( , Oz
Z;I 0 .I

Z-I I

I UJ 2 _&T IIT 

)1I -%,2 \J~- 

= Z' [I I 3 C 1 2-

( - )J

(2.7c)

I (2. 8a)

)
(2.8b)

(2.8c)

(2.8d)

(2.8e)

S
(2.8f)

(2.8g)

(2.8h)A)

/U~t-1 /ii1 Z, Z U1l

, /_,-7-T

-/

. t - I' Zl , 

I I 2
xf'i'/it 0

I I.
' I\(2/1 II

= 0c 2,z

= ot(fQ Z. 1 

=D APZ
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Equations (2.8a-h) express the ratios of wind-height and wind-wind fore-

cast error covariances to the height-height covariance, in terms of logarithmic

derivatives of the correlation CZZ and the standard deviations C and 2 

For reasons of computational efficiency, the calculation of wind-height and wind-

wind covariances (or wind-height and wind-wind correlations given below)

should proceed as indicated: the ratios (2.8a-d) are calculated first, and then

used in (2.8e-h), after which all the ratios may be multiplied by {ll to

give the wind-height and wind-wind covariances themselves.

The derivatives of log 0 and log eZ , which are the terms neglected

in conventional OI schemes, appear explicitly only in (2.8a-d). These terms may be

evaluated numerically, and involve little computational overhead. For that matter,

the derivatives of an analytically specified log Cz z may also be evaluated numer-

ically, to any desired accuracy, by taking difference quotients on as fine a mesh

as necessary. Such an approach is in general somewhat more expensive than using

analytically derived expressions for the derivatives of log C zz (see companion

paper). The derivatives of log %- and log can only be evaluated on the

mesh on which the analysis is performed, however, since M is known only on

the analysis mesh.

Although the forecast error covariances (2.8a-h) are the basic quantities

required by an OI scheme, for a variety of reasons the calculation is generally

split into separate calculations of the forecast error standard deviations and

correlations. The variances ( u )2 and ( 6 )2 are found by letting point P2

approach point P1 in (2.8g,h), which gives for the standard deviations and. ,

1-,I~ ~~~~~~~~~ Z
-' l- pep (.9a) 1 01 t
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* i GoIi3 Up i aC't ( at, )( i Aoaim 
Analogous formulas hold for and .

Equations (2.9a,b) can be simplified substantially. A general property

of autocorrelation functions C(P1 , P2), where for the moment P1 and P2 are points

in an arbitrary n-dimensional space, is that

Cyf a = 0 (2.10a)

if C is in fact differentiable at P2 = P1, where I is any coordinate of either

P1 or P2. Since- 3 C A and, by definition, C = 1 at P2 = P1 , (2.10a) is

equivalent to

1,0 5 C1 =l Ad (2. 10b)

In one dimension (P1, P2) = (x1, x2 ), equation (2.10a) is just the state-

ment that since, by definition, ICI < 1 and C = 1 when x2 = x1, it must be

that -X > 0 when x2 = x 1 - and < 0 when x2 = x1 + ~ ,for all

> 0 sufficiently small. Letting -- 0 implies

- ~~~~~C (s,)XL.)

'4 ~ ~~+ X,-E :~l %k+6

that C 0 at x2 = x1 if C is differentiable there. By definition,

C(xl , x2 ) = C(x2, xl, so C = 0 at x2 = x1 also.

In 01 we need only consider differentiable height-height correlation functions

C z, since we must always take derivatives of CZZ. According to (2.10b),

equations (2.9a,b) are therefore equivalent to
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u~iF1 > zL t | I 1 [L () (2.1 la)

C = W ip Z L |m - t ( ) J (2.1 Ib)

and similarly for .and Therefore, retaining the terms involving

horizontal derivatives of O' always increases ao and (V . This means that

in regions of strong gradients of e , the wind field forecast will be relied

on less heavily, and nearby observations will be weighted more heavily. Notice

also in (2.11a,b) that the standard deviations CUand q' depend on the

curvatures of log Czz in the coordinate directions at P2 = P1, but are otherwise

independent of Cz z.

Finally, we obtain the relationships among forecast error correlations.

Defining

- ) -Xi - (2.12a,b)
M

we have from (2.1lla,b) that

sin J i9 ( (2.13a)
lt ,. _____ 4( (2.13b)

and similarly for Z and Z where

51~( 1 4
u.5 (2.14)
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From (2.8a-h) and (2.12a,b) we then have

c/C
C /C

C 7 -

C ZV CZ

410

(C a

W I -- ----

~z ( Az
= S2 (-

r al,~C-
2- 11 4> 2-

4- z

U

+- op GI'

+ f l2Cz 

CU e/C

C VU/c

ac ' oC'

Ž2io0C9fl
= j zI Z

C UU/c- = W{ A'

CV2/ C Zz

~zj C2i:

Equations (2.15a-h) are quite similar in form to the covariance formulas

(2.8a-h). Notice, however, that the correlations (2.15a-h) depend on the signs

of C(X and pi , through (2.13a,b), but not on the values of C( and/ 3 . In

I

(2.15a)

(2.15b)

(2.15c)

(2.15d)

C Z

+

C --
.-
C Z

C-v

C

C
)

(2.15e)

(2.15f)

(2.15g)
Czu
CI - )

C-
. (2.15h)

Cu~
C __

C V'

C e7-= St Sz
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particular, the correlations are independent of the geostrophy coefficient Gi

wherever Gi # 0.

III. Discussion of OI Statistical Relationships

Several remarks are pertinent at this point. First, recall that all the

statistical relationships above have been formulated in terms of logarithmic de-

rivatives, primarily for mathematical convenience. In fact, CZZ is taken

to be the exponential of a rather simple function in most OI schemes (Czz is

Gaussian at NMC), so that the appearance of log C zz in the statisitical rela-

tionships is quite natural. Furthermore, the NMC OI system stores Q in the

form of spectral coefficients of log 0G , so that computer calculation of deriva-

tives of log 0' is particularly simple.

It is a standard assumption in OI formulations that Cz Z separates into

horizontal and vertical parts:

C ( +1) l P. 3 o.1L))( \ll {1)t) aj4

It follows immediately that horizontal derivatives of log Czz are identical to

horizontal derivatives of log HZZ, i.e.,

_ to C 2:~ Ie lo W (3.2a)

AL

i l 9 c = a log H (3.2b)

and likewise for the second derivatives. This simplifies the main results ob-

tained so far: in each of equations (2.8a-h), (2.11a,b), (2.13a,b), and

(2.15a-h), log CZZ may be replaced by log HZZ.
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Notice, however, that (3.1) does not imply that

car (^ + ; ̂ + lfp2). p Al i 2 z V ( ~p)(3.3)

for the remaining correlations, as it does in conventional OI. If the terms

involving derivatives of log r were neglected in (2.15a-h), then clearly

the right-hand-sides of those equations would be independent of the vertical

coordinate. Thus, the left-hand-sides of (2.15 a-h) would be independent of

the vertical coordinate also, from which (3.3) would follow, and the left-hand-

sides could be replaced by ratios Hqr/Hzz. When the terms involving log o

are retained in (2.15a-h), however, the right-hand-sides do depend on the

vertical coordinate, since 0 is in general not separable into horizontal and

vertical parts. Thus, the only computational simplification to which (3.1)

leads when derivatives of log 0' are retained in OI is the replacement (3.2)

of derivatives of log CzZ by those of log HZZ. This simply means that

derivatives of log , and therefore, relationships (2.8a-h) (2.11a,b),

(2.13 a,b,), and (2.15 a-h), must be evaluated on individual pressure surfaces.

A few remarks concerning the geostrophic assumption itself are in order.

It is by now a well-known fact that any linear relationship satisfied by fore-

cast errors is satisfied automatically by the analysis increments also, provided

no contradictory assumptions are made in deducing the forecast error covariances

from the forecast errors themselves. (For various precise versions of this

statement, see Petersen, 1973; Cohn, 1982, pp. 84-87, 129-131; and Phillips,

1982.) Thus, if our covariance formulas (2.8a-h), or equivalently the variance

formulas (2.11a,b) and correlation formulas (2.15a-h), are used as the basis

of an OI scheme, then regardless of the assumed form of CZZ, the analysis

increments will satisfy the geostrophic relationships (2.1, 2.2). That is,
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the analysis increments will be geostrophic where G = 1 and "subgeostrophic"

where G < 1.

We show in the following sections that inclusion of derivatives of log c'r

in the OI statistical relationships has a large effect upon the derived statis-

tics. Thus, neglect of these terms would contradict substantially the original

assumption (2.1, 2.2) of geostrophic forecast errors. Conventional OI schemes,

in which these terms are neglected, therefore do not have geostrophic (or

"subgeostrophic") analysis increments, at least in regions where r is chang-

ing rapidly. Part of our motivation in this work is, in fact, to develop a

more self-consistent OI scheme, which in light of the geostrophic assumption

means a scheme which yields geostrophic analysis increments. While the merit

of the geostrophic assumption itself is questionable (e.g., see the following

paragraphs), analysis increments with predictable behavior are certainly

preferable to increments which behave unpredictably.

One additional assumption contradicting (2.1, 2.2) is made at NMC. This

assumption is motivated by the following argument. Notice in (2.2) that if G- 

0 as + ->0 faster than f = 2 f sin +-- 0, then = / = O at 4 = 0. In

fact, at NMC, CO and I are taken to be zero equatorward of 10° . But

then, if we follow assumption (2.1), the forecast errors in the wind field

are zero in that region. Consequently, the forecast error covariances (2.8a-h)

and standard deviations (2.11a,b) are zero in that region. (Also, the correla-

tions (2.15a-h) are undefined when C0(= ( = 0 due to the appearance of the factors

and which, according to (2.13a,b) and (2.14) are not defined

whewA=/b = 0. We may take the correlations to be zero in this case, i.e., we

may define sign X = 0 when X= 0, because in OI the correlations are

eventually multiplied by (zero) standard deviations to give (zero) covariances.)
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This simply means that the forecast is perfect in this region, and OI would

use no observations to update the forecast there.

This is clearly an undesirable situation. The remedy used at NMC is that,

as G --0, the standard deviations u and CIv are augmented by an amount

which tends to a nonzero constant at the equator. The covariances are calculated

by multiplying these augmented standard deviations by the usual geostrophic

correlations. The result, of course, is that analysis increments do not satisfy

(2.1, 2.2) in the tropics, and it is difficult to say what kind of relationships

they do satisfy. This fact, in conjunction with the neglect of derivatives of

CT in the OI formulation, is likely to cause poor tropical analyses.

A more natural way to remedy this situation would be simply to modify the

geostrophic assumption which, after all, is the cause of the dilemma. Daley

(1983), for example, has suggested the introducton of some divergence into the

basic assumption. Equations (2.1, 2.2), as they stand, imply that there is no

error in the forecast of the divergent wind, which is not a good assumption in

the tropics.

As a final remark, we note that is it less expensive to calculate only

covariances (2.8a-h), which are the statistics actually required by OI, rather

than to calculate separately the standard deviations (2.11a,b) and correlations

(2.15a-h). This is currently not done at NMC, at least in part because of the

aforementioned process of augmenting &r and GP' in the tropics.

IV. The Magnitude of cy- Gradient Effects

To develop insight into the effect of including horizontal gradients of C

in an OI formulation, we now calculate some of the OI statistical relationships in

case Czz is a Gaussian function of spherical distance. Both in this section
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and the next, we use the variance formulas (2.11) and correlation formulas

(2.15) and we contrast the values they yield in the absence and in the presence

of gradients of . For the variances, the comparison is not strictly one

between the current NMC scheme and a scheme which accounts for variability of

, since the current NMC practice also involves augmenting the variances

in the tropics, as discussed in the previous section. The comparison for

correlations, however, can be regarded as such a strict comparison, since the

current NMC scheme does not alter the correlations in the tropics.

We take

ctt = ;(Ž t ,, ;7zd¢X) V (a j ) (4.1)

as in (3.1), and we specify a Gaussian horizontal correlation

Us= e- z- (4.2)

where s is the angle subtended at the center of the earth by points P1 and P2,

s = arccos [sin 'isin+z + cos cos4 2 cos ( A1- Az)], (4.3)

and

/ 2 Z (4.4)

0To

Here a is the radius of the earth, so that as is the spherical distance between

I
points P1 and P2, and do is the correlation distance (currently do = E x

103 km at NMC). We examine first the effect of horizontal gradients of 0b upon

0 . One can show for CZZ given by (4.1-4.4) that



16

at~ lO a4sD7^ 9 -Cb (4. 5)

P'-7p, aZl D4,

In fact, equation (4.5) still holds if (4.3) is replaced by various approximations

to the spherical distance, including the one in current use at NMC (see companion

paper). From (2.11a) and (4.5) we have

C Iob L b --, - . (4.6)

When gradients of c are neglected (or are small), it follows that 1OX b z =

]CKIr- is the constant of proportionality between 0 and . Therefore,
Co,

decreasing the correlation distance do always increases TU (and Q. ).

Furthermore, retaining gradients of CO" always increases 0 (and ).

This was already noted in Section II.

To ascertain the magnitude of the latter effect, let

~UU with gradient term

(4.7a)
without gradient term

= 0 I + b ( < ) 2 (4.7b)

Further, from (4.4) we have that

F /~~~ d 0C r 2 IR U [ t ( ) (4.7c)
-'( )Zj/Z (4.7d)

where A Q denotes the instantaneous change in per meridional distance

do . Referring to Fig. 1, we see that contours are frequently as close together



17

as 100 km, in which case ATid = 35 m, since the contour interval is 5 m and

do, I 700 km. This occurs, for example, at the 30 m contour near 25°N, 330°W.

Here we have = _35 so that

3o

1pN i= .30 (4.8)

l

Retention of gradients of in OI can increase the magnitude of 0 v and 0y by

up to about 30%.

Next we examine the effect of gradients of Co upon the correlation func-

tion Cuz. Consider points P1 and P2 for which CUZ(P1 ,P2) = 0 when gradients

of are neglected. Then when these gradients are included we have from

(2.15a, 2.13a, 4.5) that

C / - a, )+ (4.9a)
or, with (4.7b),

r7
~Cot'~~~~ YF (sigooi,) (siren v (4.9b)

That is, upon including the effect of variability of the zero-line of

Cuz instead has values proportional to CZZ. The constant of proportionality

can be quite large: when RUl = 1.3, for example, we have

CtJ = ~ O -U(ln (- V 0. C i-(4.9c)

Thus, at the origin P2 = P1, which does lie on the zero-line of the conventional

Cuz (Fig. 3a), we now have Cuz = + 0.64. This is a very large effect, which

should have significant impact on OI analyses.

The nature of this effect is actually independent of the height-height

correlation function CZZ. Where the logarithmic first derivatives of Q' are
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large compared to those of Cz z, and where the squares of the logarithmic first

derivatives of T are large compared to the curvatures of log CZz at the origin

P2 = P1, it follows immediately from (2.13, 2.15) that

C S tSli OL)(S9 3 - ) C (4.10a)

C )(S ,

C *-, C:~ 1 1P

5

(4.10b)

(4.10c)

(4.10d)

-J C

B__ I C)

D~ me ) i

Cuv _ sn}(l62 (4.10e)

(4.10f)

(4. 10g)

(4.1Oh)

CVL,. (S' C,Y1 I W�Iz

UU
:5C�2-)(C

:EEVV (S

The example we have given indicates that realistic fields are in some

regions rather close to this asymptotic situation. We attempt to quantify this

statement further in the next section.

(sIQk ) (S ' 9'n q2sL 
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V. Correlation Functions for Simulated Or Fields

At NMC, the height-field forecast error standard deviation C: is obtained

by adding to the estimated analysis error variance a quantity representing the

growth of error variance over the six-hour forecast period. The estimated

analysis error variance is a by-product of the 1O analysis procedure. It is

computed at each analysis point and is a function of the amount, quality and

distribution of the data near each analysis point.

Figure 1 is a map of the estimated forecast error standard deviation of

height at 500 mb for OOZ on September 10, 1984. We see that there are a number

of areas where C: changes quite rapidly. For instance, there is a bulls-eye

feature centered over the Amazon region. The contours surrounding this region

represent the change in V from the data-sparse Amazon basin to the areas

surrounding it where there are more plentiful data. There is also a similar

area of less circular contours surrounding the region of the Sahara Desert.

Less densely packed are the contours visible off the western coast of North

America, which indicate the transition zone between the dense, high quality

radiosonde data prevalent over the continent, and the oceanic region dominated

by satellite data which are assumed to be of lesser quality.

We shall use idealized representations of these three regions to investi-

gate the impact of accounting for gradients of the height-field forecast error

standard deviations. Our sample forecast error standard deviation fields will

be constructed using the simple delta-like function

()= (5.1)2p
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In this equation, C( controls the amplitude, r is a scale factor, Xo

locates the center of the peak, and p broadens the peak. To represent a two-

dimensional forecast error standard deviation field, g( + ) and g( / ) are

multiplied together. A separate set of parameters is specified for each direction.

Also, since nowhere on the globe does the forecast error standard deviation

approach zero, a constant Co is added to the product. The equation used to

specify the height forecast error standard deviation field is

Figure 2 presents three sample forecast error standard deviation fields.

To facilitate comparisons and to minimize spherical distortion, each field is

centered at 30°N latitude. In each case, we will calculate correlations between

a centrally-located analysis point and points throughout the region. Figure

2a represents the feature shown in Figure 1 centered over northern South America.

The parameters used in equation (5.2) to produce this pattern are listed below.

+ = 7.5 += 15.0 o = 30.0 = 4.0 CO= 29.0

CX = 7.5 = 15.0 = 100.0 = 4.0

Figure 2b represents the portion of the field between the Mediterranean

and the Sahara in Figure 1. The parameters specifying this field are

0(4= 8.54 = 40.0 o = 10.0 = 3.0 CO = 19.0

= 8.5 = 90.0 = 100.0 = 3.0

Figure 2c is an idealized representation of the broader gradient of 0~

located off the coast of the southwestern United States. The parameters for

this field are
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0(+ = 5.0 = 70.0 4O =-15.0 p = 4.0 CO = 10.0

= 5.0 = 90.0 = 100.0 p~ = 4.0

In Figures 3a-d we show the uz, uv, uu and vv correlations (2.15a,e,g,h)

centered at 30°N latitude for the case in which gradients of T' are neglected,

using the correlation function given by equations (4.1-4.4). Results using

other formulas in place of (4.3) are described in the companion paper. The

figures described below, in which gradients of 0- are retained, will be

compared to Figs. 3a-d. In all the figures, point P1 is the analysis point,

located in the center of the frame, and point P2 is the variable point.

Figures 4a-d display the same forecast error correlation functions shown

in Figs. 3a-d, except that they include the effect of the height forecast

error standard deviation field shown in Figure 2a. Figures 4a and 3a,

representing the uz forecast error correlation, appear to be identical. To

explain this, notice that the only derivative of Ot in equation (2.15a) is

the derivative of log r with respect to latitude at location 1, the analysis

point. Figure 2a shows that this derivative is zero.

Before discussing the appearance of Figure 4b, the uv correlation function

corresponding to Figure 2a, we examine equation (2.15e) to predict where changes

should be most noticable. The two terms involving derivatives of Hi are with

respect to latitude at point 1, the analysis point, and with respect to longi-

tude at point 2. We have already seen that the former derivative is zero.

The latter is largest in the area bordered by 40 and 20 degrees latitude on

the north and south and 115 and 105 degrees longitude on the west and east,

and also in a box with the same northern and southern extents and with east

and west borders of 85 and 95 degrees west longitude. Comparison of Figures

4b and 3b reveals significant differences in these two areas.
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The equation for the uu correlation (2.15g) contains derivatives of

with respect to latitude only. The areas in which (Y varies most with lati-

tude in Figure 2a coincide with the location of the negative lobes of the uu

correlation in Figure 3c. In Figure 4c, these lobes have increased in amplitude.

Equation (2.15h), used to construct the vv correlations in Figure 4d,

only has derivative terms with respect to longitude. Therefore, we should see

the greatest changes in the areas of the largest east-west gradient in Figure

2a. Figure 4d shows the two side lobes of the vv correlation, which are located

in the regions of the sharpest longitudinal gradients of Cr , to be of signifi-

cantly higher amplitude than the corresponding vv correlation in Figure 3d.

Figure 2b represents a case in which the analysis point is located in

the midst of a north-south gradient of Or similar to the gradient seen in

Figure 1 between the Mediterranean and the Sahara. With a field such as

this, all the derivatives of 0r with respect to longitude will be zero and the

only terms to contribute will be those involving a change of Or with latitude.

Figure 5a, compared to Figure 3a, shows the radical transformation of the

uz correlation that occurred from assuming the field of D" in Figure 2b. The

zero line has been shifted about 2 degrees northward. The southern positive

lobe has increased in amplitude and area while the northern negative lobe has

lost intensity and spatial extent. One effect is that the correlation of u

and z forecast errors at the analysis point, which is zero using the correla-

tion equations in operational use today (see Figure 3a), would now be 0.4. This

is a substantial change.

The forecast error standard deviation field in Figure 2b produces much the

same effect with the uv correlation function. In Figure 5b, the two lobes south
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of the zero line have increased in amplitude, the two lobes north of the zero

line have lost intensity and the zero line itself has been moved northward by

about 2 degrees. This change affects greatly the weight that an observation

would be assigned.

The terms accounting for non-homogeneous height forecast error standard

deviations in the uu correlation equations are derivatives with respect to

latitude only. Therefore, we should see some difference between the uu correla-

tions in Figure 5c and those in Figure 3c. There are small differences every-

where but the areas where they are most noticable are the two negative lobes.

The northern negative lobe has reduced in amplitude and the southern negative

lobe has increased in amplitude.

The vv correlation in Figure 5d is identical to the one displayed in

Figure 3d because the vv correlation equation (2.15h) contains derivatives of

En with respect to longitude only. The V field in Figure 2b is independ-

ent of longitude.

Figure 2c, the last of the height forecast error standard deviation fields

that we shall examine here, is similar to the previous one (Figure 2b), except

that it represents a much smaller gradient. It is meant to represent the

gradient present in Figure 1 off the southwest coast of the United States and

Mexico. Again, the analysis point is in the center of the figure at 30°N.

Figures 6a-d present the correlations calculated using the T, field in Figure 2c.

Here we expect an effect similar to that shown in Figures 5a-d, but with smaller

magnitude.

Figure 6a does show an effect similar to that observed in Figure 5a.

The zero line is moved northward but only by about one degree in this case.
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Also, the reduction of amplitude in the northern lobe and the increase of

amplitude in the southern lobe is less. The same effect is seen in Figure 6b,

with the uv correlation function. There is a change in the uu correlation

shown in Figure 6c that is similar to the change seen in Figure 5c, but with

smaller magnitude. The vv correlation in Figure 6d is the same as that in

Figures 3d and 5d.

VI. Summary and Conclusions

The dominant feature on maps of the height-field forecast error standard

deviation, o0 , is the presence of strong horizontal gradients of 0' near

boundaries separating data-dense and data-sparse regions. This fact is neglected

in the forecast error covariance formulas which are fundamental to the OI analysis

system at NMC. We have derived new formulas for the forecast error covariances

which fully account for the spatial variability of Hi . Apart from the

presence of a few easily-calculated additional terms, these formulas are

identical to those used currently in the OI system.

A simple analysis of the new formulas demonstrates that the effect of

variability of Co is large in many regions. The effect always increases the

wind-field forecast error standard deviations. The wind-height and wind-wind

forecast error correlations lose the homogeneity and isotropy properties they

possess in the operational OI system. In fact, these correlations all asymptote

to the height-height forecast error correlation with increasing gradients of

. Plots based on simulated tr fields demonstrate that gradients of

encountered in several regions of the globe place the wind-height and

wind-wind correlations well within this asymptotic regime.
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Our sole assumption in this work is identical to the assumption upon

which the current operational OI system is based: forecast errors are geostrophic

in extratropical regions, and "subgeostrophic" in the tropics. We have pointed

out that if the spatial variability of Ca is accounted for in the OI formulation,

then the actual analysis increments will also be geostrophic in extratropical

regions. We have also shown that the basic assumption leads to inconsistencies

in the covariance relationships for tropical regions. A modification of the

basic assumption which accounts for forecast error in the divergent wind should

both remove these inconsistencies and enhance the likely benefit of accounting

for the spatial variability of .
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Figure 1. 500 mb height forecast error standard deviation for OOZ September 10, 1984 as derived from
NMC's optimum interpolation analysis procedure. Contour interval is 5 meters.
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The (a) uz, (b) uv, (c) uu and (d) vv forecast error

correlations centered at 30°N and 100°W for the case

in which gradients of az are neglected.
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The (a) uz, (b) uv, (c) uu and (d) vv forecast error
correlations for which the effect of the at field
shown in Figure 2a is included.
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The (a) uz, (b) uv, (c) uu and (d) vv forecast error

correlations for which the effect of the o field

shown in Figure 2b is included.
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The (a) uz, (b) uv, (c) uu and (d) vv forecast error
correlations for which the effect of the ao field
shown in Figure 2c is included.
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